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Abstract

This paper describes a videogrammctric technique for

determining aerodynamic loads based on optical elastic
deformation measurements. The data reduction methods

are developed to extract the normal force and pitching
moment from beam deformation data. The axial force is

obtained by measuring the axial translational motion of a
movable shaft in a spring/bearing device. Proof-of-concept

calibration experiments are conducted to assess the

accuracy of this optical technique.

1. Introduction

Internal strain gauge balances have been used tor years
as a standard technique lbr measuring the integrated

aerodynamic forces and moments in wind tunnels. A

variety of internal strain gauge balances have been
developed and the technical aspects of various balances
have been studied in detail 11 I. Generally speaking, the

structure of an internal strain gauge balance is complicated
and the cost of fabrication is high. This paper presents an

exploratory study for remotely measuring aerodynamic
loads using a videogrammetic system. Unlike strain

gauges, this method optically measures beam deformation
to determine the normal force and pitching moment. The

axial force is obtained by measuring the translational
motion of a movable shaft in a spring/bearing dcvicc.
Mathematical models for data reduction are developed to

extract the aerodynamic forces and moments from
delbrmation data. Uncertainty analysis is given to evaluate
the contributions from the elemental error sources and

correlation terms. At this stage, the normal force, pitching

moment, and axial force are the primary quantities to be
dctcrmined. In principle, the side force, rolling moment,

and yawing moment can be determined in a similar manner.
Proof-of-concept laboratory experiments have been

conducted to validate the proposed methodology of

measuring the aerodynamic loads. Potentially, the optical
method can bc used as an alternative to strain gauge
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balances. In addition, the technique described in this paper

can be easily integrated with the optical model attitude
measurement techniques 12,3].

2. Cantilever Beam Deformation
Deformation of a cantilever beam is utilized to

calculate the normal force and pitching moment. Consider
a cantilever beam bent by a force F and a moment M

applied at the end, as shown in Fig. 1. According to the
engineering beam theory in which the dcl\_rmation duc to
shear strain is assumed to be negligible 141, the normal
c0ordinatc v of the beam is described by

El_ x )v_ =-F( L-x )-M . (1)

where v, is the second derivative with respect to x, M is

the local bending moment. E is the modulus of elasticity,
and I(x) is the moment of inertia. The boundary conditions

arc v_(x=O)=v_o and v(x=0)=v o. The solution lot

the displacement (_v = v- vo - v,_ x is

_v(.r)=-E-I(FL+M )Qj(x)+E IFQ_(x), (2)

where

QI( x ) = [ I( x" )l-Ida"'.
)

I?I'Q:( x)= [ I( x" )]-/ x"dr".
0

For a rectangular cross-section beam, the moment of inertia

is / = wh ¢ / 12, where w is the width and h is the height of

the cross-section. For a circular cross-section beam, the

moment of inertia is I = ;,rR4/4. where R is the radius of

the circular cross-section. When a beam has a constant

cross-section and the moment of inertia is constant, the

expression (2) becomes

c%(x)= -(EI)-I(FL+ Mkx2/2 +(El) -I F x¢/6 . (3)

Therefore, the local displacement (Sv and the slope change

_v, =v x -v_0 are

8v_ = "-�2El -x/E1 M ' (4)

where M, =FL+M is the moment with respect to a

moment center c. Eq. (4) gives a linear relation between

the deformation (Sv. rv, ) and the Iorcc and moment



(F,M,). When the deformation due to shear strain is

taken into account, a more complete analysis of a

rectangular cantilever beam gives a non-linear relation [5]

_v =( x _ /6EI )F-( x/2EI )FL 2 +( I/3EI )FL _ -
(5

¢5v_ =( x 2/2EI)F-(I/2EI)FL 2

A generalized relation can be written as

6v:ZC, jFU and ,_v, =ZC:iFLJ, (6)
i=O i=O

where Cii are the coefficients to be determined in

calibration tests using the least-squares method. These
theoretical results provide basic models for data reduction
to recover the force and moment. Generally, given the
force and moment, the theoretical relations describe beam

deformation profiles well. However, inversion to the force
and moment from deformation measurements is a 'stiff"

problem that is very sensitive to small errors. In practical
data-reduction procedures, these theoretical results will be

combined with empiricism to deal with imperfections in the
real measurements.

3. Data Reduction Methods

3.1. Method based on local displacement and slope

Eqs. (4) and (5) indicate that the tbrce F and moment

M, depend on the local displacement tSv and the change

of slope _v_. Theretbre, (F,M,) can be determined

from measurements of (¢_v, 6v, ). Here, the pitching

moment M is defined as M, =F(L-L, ), where L is the

distance between the force (load) location and the beam

support and L, is the distance between the moment center c
and the support. The local displacement and the change of

slope are

_Sv = _ x ) - v( x,,: t ) - v_( x,.,_t )__,'t

¢5v, = v,( x )-v,( x_ t ), (7)

where x_<t is the reference location where deformation is
small such as the position near the support. Instead of

directly using the definition (7), the practical procedures for

calculating (6v, 6v_ ) are based on the affine

transformation because of its robustness.

The quantities 6v and Sv, are calculated from the

optically measured coordinates of high-contrast targets on
the beam. Figure 2 shows a typical layout of targets on a

beam (sting) assembled to a wind tunnel model. A row of

targets, denoted by B in Fig. 2, is placed in parallel to the
beam centerline near the wind tunnel model. Another row

of targets, reference targets denoted by A, is placed near the

support of the beam. When the beam is deflected by
aer(_lynamic loads, not only the targets at B move, but also

the reference targets at A fnay move slightly since the

support is not absolutely rigid. Thus, the total movement of
target row B contains both the relative deformation at B

with respect to A and the local movement at A. The local
dclormation at B, which is more sensitive to loads, can be

obtained by removing the local movement at A from the
total movement at B.

In order to correct the movement of the reference target
row A due to loads, the load-off (or wind-oil) position of

the target row A is used as a baseline position. Assuming

that the local movement of the reference target row A can
bc approximated as rigid-body motion, one obtains the
affine transformation between the load-off coordinate

~

( X, Z ) and load-on coordinate ( X, Z ) for the reference

target row A

j t:r,-,,
where R A is the rotational matrix

:( COSOA sinO A IR A _ -sinOa c°sOA , (9)

0 a is a rotational angle at A, and /_A and T=A are the

translations at A. The coordinate system (X,Y,Z) is a

standard wind-tunnel coordinate system in which X is in the

free-stream flow direction, Y is in the spanwise direction of

a wind-tunnel model at zero angle-of-attack, and Z is in the
vertical direction. The beam deformation is in the ( X.Z )

plane. The rotational angle 0 a and the translations ('E_,

T-A) can be determined from the measured load-off and
load-on coordinates of target row A by using the least-

squares method.
Applying the affine transformation (8) to the load-on

coordinates of the target row B, we are able to eliminate the
cfl'ect of the local movement at A. We denote the

translbrmed load-on coordinates of target row B by

(XB ..... Zt_,,,) and call them the re-aligned load-on

coordinates of target row B relative to the reference load-

off target row A. The re-aligned load-on coordinates
~

(XB,,,,ZB,,,,) of the target row B are related to the

corresponding load-off coordinates ( X B,,tt, Z e,_tt ) by the

affine translbrmation

where R B is the rotational matrix

R (cos08 sinOt_cosOe)t3= [_sinO B . ( I 1)
\

The change of the bending angle at B is 0e and

Ar n =(7", B, T, B ) is the displacement vector at B. The



valuesof OB and Ar B = (T_I _, T:t_ ) can be determined by

using the least-squares method and they arc the average

quantities of local deformation for target row B. Therefore,
the change of the slope at B due to loads is simply

_v, = tan(O R ). (12)

The normal displacement 6;v at B due to loads is

6v = n e • Ar B, (13)

where hie is the unit vector normal to the beam axis at B.

In reality, the relationship between (F,M,) and

(_v. Sv, ) is more complicated than theoretical prediction

by the engineering beam theory. The relations for

calculating (F, M, ) arc generally expressed as

F =fd6v,6v, ) and M, =,f2f6v,6v., ). (14)

In practice, we do not tend to globally fit the whole set of
calibration data to obtain the complete functional relations.

Instead. for a given data point (6v, 6v, ), we use a local

2nd-order polynomial to interpolate a group of neighboring

calibration data points, that is+

F=Bt6 and M =B2_. (15)

where ,_ is the deformation vector defined as

= ,' , _ , )2 ]T6 l&',6v f6v): 6v6v ,+6v

and B t and B, are the coefficients determined by

calibration.

A simple model approach can be also used to recover

(F. M,) from given (6v. 6v, ). It is found that for a

suitably chosen moment center L,. the moment

M_ = F(L- L ) is simply a linear function of either 6v

or 6v_. This is a reduced case in which 6v is

proportional to 6v,. In this case. the moment M, is given

by a simple proportional relation

M, =F(L-L )=a(_v), (16)

where ce is a proportional constant determined by

calibration. The best moment center x = L to achieve the

linearity given by Eq. (16) can be determined by an
optimization scheme. In addition, an empirical relation
between F and 6v is

6v=[fl +flt(L-L )+fl:(L-L, ):IF, (17)

where flo, ill, and a: are constants determined in

calibration. Eliminating (L-L_) in Eqs. (16) and (17).

one obtains a 2nd-order algebraic equation for F

floF 2 +( fltM , -(Yv )F + [J:M ,: =0. (18)

In principle. F and M, can be obtained from Eqs. (16) and

(18) for a given 6v. However, Eq. (18) has two real roots

that are often close each other. It is not easy to choose the

correct solution without a good initial guess of F. This is a

shortcoming of the simple model approach.

3.2. Method based on global beam deformation profile

From Eq. (3), one knows that the displacement _v

along the beam axis can bc described by the theoretical
relation

6v(x)=ax2 +hxY. (19)

where x is the coordinate ahmg the beam axis 6v is

obtained using Eq. (13). and the coefficients a and b arc
related to F and M,. However. the relation between (a, b)

and ( F. M, ) is not as simple as thai given by Eq. (3). The

empirical relations are symbolically expressed as

F=.ffia. b) and M = f2(a.h). (20)

For a given data point ( a, b ), a local 2nd-order polynomial

fit to a group of neighboring calibration data points is used

to recover ( F, M ).

As an alternative, we also use a simple model approach

to calculate ( F. M, ). The empirical functional relations

are

a =[a, +a/(L-L )+a:(L-L ): ]F

h=[b,+bflL-L )+b:(L-L ):]F, (21)

where (a,,al,a 2) and (bo.bl,b 2) are determined in

calibration. The solution to Eq. (21 ) is

L - L = ( -c; + _]c/- 4Qq, )/( 2c: )

F=a/[ao+co(L-L ' )+a:(L-L ): ], (22)

where co =boa/b-ao, c I =bla/b-a z. and

c, =b_a/b-a,.

3.3. Uncertainty
For uncertainty analysis, consider the general

functional relations between ( F, M, ) and ( 6v, _v, )

F=fl(_v.6%, p) and M =.f:(6v,6v,,q), (23)

where P=[PI,P:.'"P,_'] and q=[ql,q:,'"qx] arc

the parameters characterizing the functional relations.

Standard uncertainty analysis 16l gives the error
propagation equations for the relative variances of F and

m,,

variFy _x'
77- ,:, 7-g,7" , _&,)-

Ivar( &' )vaO &', )I I/'z
+ S/6,,S/,sv ' Rt_Yv,&', )

&,&.

(24)

var(M

M, 2 i=l = '

Ivar( & )v,r( &', _]1/'_
+ S2&,S2&, R( &'.&', )

;£,&,

where the sensitivity' coefficients are

Sit, ' =( pi/F )( OF/c)pi ).

(25)



S2q i =( qi/M,. )( OMc/Oqi ),

$16v =( _v/F )( bF/_, ),

$16v =( 6v,IF )( 3FIO&,, ),

$26 v = ( _,/M, )( OM,./_6v ), and

$26,,, = ( _w., IM , )( _M , I_'., ).

The correlation coefficient R(_i,_l ) between the

variables (i and ( i is deft ned as

R(_i._ i )=:cov((i( j )l/var(( i )var((i )]l/: , and the

variance and covariance are var(fi)=<A_'i2> and

t_'OV((i_ j ) : < Zl_'i_j >, where the notation < > denotes

the statistical assemble average and /-J(i = _i- < _i > is

the variation. There are two types of contributions to the
total uncertainties in F and M,. The summation terms in the

right-hand side of Eqs. (24) and (25) are the uncertainties in

fitting the coefficients p and q in the data-reduction

models. The other three terms in the right-hand side are the

uncertainties in measurements of (6v, 6v,). The

uncertainties in measurements of (Sv. 6v,) are

determined by the accuracy of the camera calibration (about

1:60000 tbr the videogrammetric system used). In addition,
an important error source that is not included in Eqs. (24_
and (25) is a bias error in the data-reduction mathematical

model itself since the model may fail to describe correctly

actual measurement processes.
The last terms in the right-hand side of Eqs. (24) and

(25) are the correlation terms that are more intriguing since

they could be positive or negative. The total uncertainties
decrease when the correlation terms are negative and
otherwise the total uncertainties increase. Based on the

linear theoretical relation (4), the correlation between 6v

and 6v x can be calculated, that is,

< A( 6 v )A( 6 v, ) > =

x _<(AF): >[x_2(L_L, )][x-3(L-L, )]" (26)
12( El )2

The correlation terms in Eqs. (23) and (24) are

< A( 6 v )A( 6 v, ) >

< ( AF )2 >
[x-2(L-L,. )][x-3(L-L, )l

x2F 2

<zl(6v)A( _v, )>

S2_ Sz_" 6v6v _ -
• (27)

< ( AF )2 >
[x-2(L-L, )][x-3(L-L,. )1

6M?

The correlation terms are negative for

2(L-L, )<x<3(L-L,) and 0<L, <L. Furthermore,

at a fixed target location x = rL (r < 1 ), the correlation

terms are negative when the moment center x = L, is in

(2-r)L/2<L,.<(3-r)L/3. This analysis indicates

that the moment center can be suitably selected to reduce
the total uncertainties in measurements.

4. "v'ideogranmaetric System
In this study, elastic deformation of a beam is

measured using a videogrammetric system. Based on the

principles of close-range photogrammetry, the
videogrammetric system measures the coordinates of

targets distributed along the beam from target centroids in
digital images. Deformation of the beam is then calculated

from the measured target coordinates. Figure 3 shows a
schematic of a two-camera videogrammetric system lbr
deformation measurements. Basic hardware of the system
consists of two Hitachi KP-F1 CCD cameras with 15-mm

lenses, a Dell PC with a Matrox Pulsar frame grabber

board, light sources and retro-reflecting targets on the

beam. Software includes programs tot image acquisition,
target-tracking/centroid calculation, and camera calibration.

This system is able to provide three-dimensional
coordinates (X, Y, Z) in almost real time. The accuracy of

the videogrammetric system used for this work is typically
1:60000. After the coordinates of the targets on the beam

are obtained, the deformation ( _v, _v_ ) can be calculated.

The data-reduction programs for calculating the
deformation, force and moment are written in Matlab. The

technical aspects of the videogrammetric system have been

described in detail by Liu et al. 17,8]. Comprehensive
reviews of application of videogrammetry to wind tunnel

testing have been given by Burner & Liu [2], and Liu et al.
[8].

5. Experimental Results
5.1. Simple beams

Figure 4 shows a standard balance calibration

apparatus and a two-camera videogrammetric system.
Three simple beams have been calibrated to examine the
proposed methodology of recovering the normal force and

pitching moment (see Fig. 5). One is a brass beam with a

0.75 inxO.75 in square cross-section and the rigiditx of

El = 350 x 10 _ Ib-in 2. A more flexible stainless steel beam

is actually a fiat plate that has a rectangular cross-section of

1.5in×O.25in and the rigidity of E! =47x10 _ lb-in-" A

more rigid stainless steel beam was also used, which has a
circular cross-section with a diameter 0.75in and the

rigidity of E1 =442x10 _ lb-in 2. A number of rctro-

reflecting targets used for deformation measurements are

placed along the centerline of a beam.
Figures 6 and 7 show the local displacement and slope

change ( Sv, _Sv, ) as a function of the normal force for the

brass beam at four different loading positions. It is found



thatthedependenceof boththelocaldisplacementand
slopechangeon thepitchingmomentis linearwhenthe
momentcenterissuitablychosen.Thelinearrelationsarc
clearlyshownin Fig.8 tbr thebrassbeam+wherethe
momentcenterdeterminedby anoptimizationschemeis
locatedat L, = 9.03 in. This linearity is utilized in the

simple model method for data reduction. Figure 9 shows
the errors in measurements of the normal force and pitching

moment by using the method based on local displacement
and slope change for the brass beam. The local 2nd-order

polynomial and the simple model methods are used for data
interpolation. For the soft and stiff stainless steel beams,

Figure 10 shows the measurement errors in thc normal
force and pitching moment. Typically+ the relative errors in

the normal l+orce and pitching moment are within +10_?_and

+5%+ respectively.
The method based on global deformation profile is

used to recover the normal lbrce and pitching moment for

the brass beam. Figure II shows measured deformation

profiles of the brass beam lot different loads at the loading
position L = 28.069 in. These measured data can be well fit

by the theoretical solution 6v( x ) = a x 2 + b x -'+. The errors

in measurements of the normal l+orce and pitching moment

are shown in Fig. 12, where the local 2rid-order polynomial

and simple model methods are used for data interpolation.
Compared to the method based on the local displacement

and slope change, the method based on the global
deformation profile gives smaller relative errors in the

normal three (within +5_) and pitching moment (within

+3e_) for the brass beam.

5.2. Sting-model combination
A steel sting-model combination used in the Unitary

Tunnel at NASA Langley was calibrated, as shown in Fig.

13. The sting has a tapering circular cross-section with a
linearly decreasing radius from 0.5975in. to 0.197in.

Accordingly, the rigidity decreases from 2800x10 ¢ to

38x10 ¢ lb-in 2 and the mean rigidity of the sting is

930×10 .¢ Ib-in 2. In calibration tests, the maximum

displacement of the sting is about 0.03in and thc maximum
change of the local bending angle is about 0.23 degrees.
Two strain gauge bridges were also installed on the sting
for measurement of the normal force and pitching moment,

allowing a direct comparison between the strain gauge

method and the optical method.
During calibration tests, a number of dead weights

from 2 Ib to 10 Ib wcrc loaded at three different locations

on the model to generate the required forces and moments.
Three rctro-reflecting targets were placed near the model

for measuring local deformation and four other targets were

placed near the support as a reference. The local

deformation quantities (6 v, 6 v _ )wcrc measured using the

vidcogrammetric system. The method based on the local
displacement and slope change was used to determine the
normal lorcc and pitching moment. Figure 14 shows the

measurement errors in the normal force and pitching

moment for this steel sting-model combination. The results

indicate that the optical method based on remote
deformation measurement is less accurate than the more

sensitive strain gauges. The relative errors in the normal

force and pitching moment obtained by the optical method

are about +5% in comparison with +2_ given by the strain

gauges.
5.3. Three-force beam

In order to measure the axial force along with the

normal force and pitching moment, a three-lotto beam has

been designed and fabricated. As shown in Fig. 15. the
three-force beam consists of a simple beam and a

spring/bearing device that only allows translational motion
along the beam axis. The structure of the spring/bearing
device is shown in Fig. 16. A steel axial load shaft (made

of medium-alloy A-2 steel) is a moving rod that is

constrained by a linear bearing mounted inside the
hardware assembly. The rod is hardened and has a ground
surface finish of 0.625 (+0.0002/-0.00(X}) inches on thc

diameter. This tight tolerance allows a very close interface

fit with the bearing so all lateral movement is minimized.
Another main component of the device is the spring that

balances the applied axial three. Ranges of the springs with
different spring constants are available and can bc selected

to meet the requirements of the axial torce calibration. The
three-force beam attaches to the extended end of the 0.625

diameter stainless steel beam. The devicc housing has an
outside diameter of 2.38 inches and is 6.0 inches long with

an extended length of the entire beam assembly of 28.25
inches in the balance calibration apparatus. As shown in

Fig. 15, a number of retro-reflecting targets arc placed on
the simple beam for measuring beam deformation. Four

targets are placed on the spring/bearing device as a
reference and the other four targets are placed on the

movable shaft lbr measuring the axial translational motion
relative to the reference targets. The average spacing
between retro-reflectivc targets is approximately 0.65
inches.

The normal force and pitching moment arc obtained by

using the same methods as previously described. The
measurement errors in the normal force and pitching

moment are shown in Fig. 17, indicating +4% errors for the

normal force and -+3_ errors for the pitching moment. The

axial force F,,_ is related to the axial displacement 6x by a

linear relation

C,_ - F,,, = k 6x, (28)

where k is an effective spring coefficient and F,,,0 is the

force at 6x = 0. When the normal three F x and pitching

moment M, exist, k and F,, 0 arc not constants and they

are weakly dependent on F x and M, duc to the prescnce

of friction in the bearing. Experiments show that k and

F,,_o arc mainly related to the loading position M/F x



over a certain range of the normal force. Thus, an empirical
calibration relation for the axial Ibrce is

F,. =k(M,/FN)_X+F,,._o(M, /FN), (29)

where k( M , / Fu ) and F,,._o(M ,, / Fu ) are empirically

expressed by polynomials. Figure 18 shows the linear
relation between the axial force and the measured axial

displacement. As shown in Fig. 19, the measurement errors
in the axial force obtained by using Eq. (29) are within
+8%.

6. Conclusions

The methodology of optically measuring aerodynamic
loads is developed based on beam deformation theory. A

two-camera videogrammetric system is used for optical
deformation measurements. The data reduction models for

extracting the normal torce and pitching moment utilize
either the local displacement and slope change or the global

beam deformation profile. The interpolation methods for
calibration data include the local 2nd-order polynomial fit

and the simple model approach. On the other hand, the
axial force is obtained by measuring the translational

motion of a movable shaft in a spring/bearing device. In
order to validate the proposed technique, three simple

metallic beams with different rigidities have been tested to
recover the normal torce and pitching moment. Typically,
the relative errors in the normal three and pitching moment

are, respectively, from +5% to +10% and +2% to +5% for
the three beams. A steel sting-model combination was also
calibrated for a direct comparison between the strain gauge

method and the optical method. The loads obtained by the

optical method have larger errors than the strain gauges. To
determine the axial force, a three-force beam that allows the

axial translational motion has been designed and fabricated.
The measurement errors in the axial force are within +8%.

At this stage, the optical method is less accurate than the

well-developed strain gauge method. Nevertheless, the
optical method has the capability of remote non-contact
measurement and it can be readily integrated with the

optical methods of model attitude measurement. The

optical method described in this paper can be considered as
an alternative in certain cases where the strain gauge
method cannot be easily applied. Further research effort

will be made to improve the accuracy of the optical method

in measuring aerodynamic loads and apply the technique to
wind tunnel testing.
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The optical method is based on the local displacement and

slope change.
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